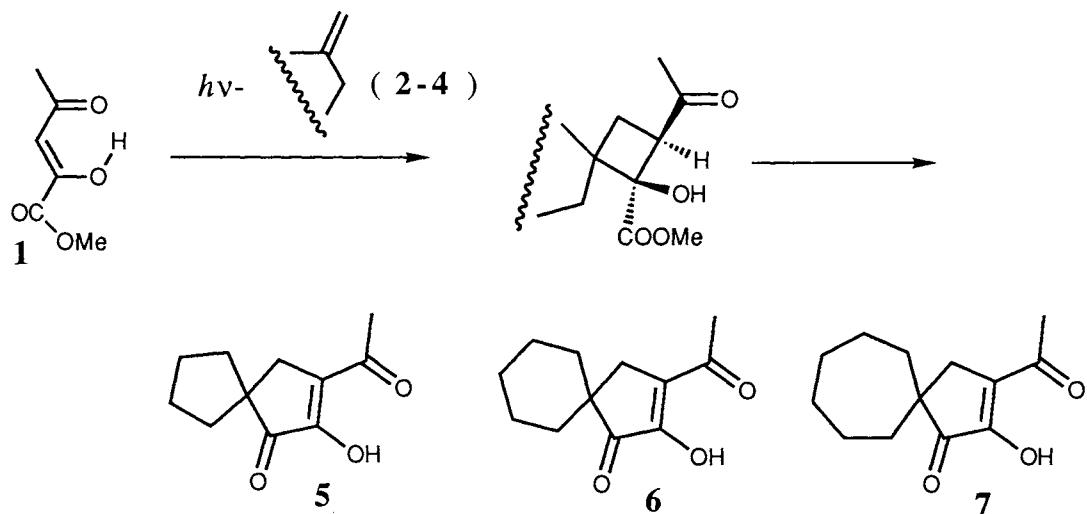


One-pot Formation of Functionalized Cyclopentenone Derivatives via Retro-Benzilic Acid Rearrangement
of the Proto-Photocycloadducts of Methyl 2,4-Dioxopentanoate to Methylenecycloalkanes


Toshihide HATSUI, Shin-ya IKEDA,[†] and Hitoshi TAKESHITA*

Institute of Advanced Material Study, 86, Kyushu University, Kasuga-koen, Kasuga, Fukuoka 816

[†]Graduate School of Engineering Sciences, 39, Kyushu University, Kasuga-koen, Kasuga, Fukuoka 816

The *proto*-Photocycloadducts of methyl 2,4-dioxopentanoate to several methylenecycloalkanes and -alkenes spontaneously caused *retro*-benzilic acid rearrangement, exclusively. The reaction proceeded quite cleanly, and a simple work-up without chromatographic separation allowed to isolate the products directly in very good material balance.

Photocycloaddition reactions leading to cyclopentane derivatives are quite rare.¹⁾ The recently-reported formation of 3-acetyl-2-hydroxycyclopentenone derivatives from the *proto*-[2+2] cycloadducts of methyl 2,4-dioxopentanoate (**1**) to olefins presents a unique example, which involves unprecedented rearrangement designated as "retro-benzilic acid rearrangement".²⁾ This was initially found upon heating of the *proto*-cycloadducts from sterically-hindered olefins, which are usually quite unreactive, and its application to organic syntheses is therefore limited.³⁾ However, since conformationally rigid bicycloolefins such as camphene exclusively gave the rearrangement products without pyrolytic work up, though in an inferior yield,⁴⁾ it is desirable to extend the study to conformationally rigid, but sterically less hindered olefins.

Herein, we report an exclusive and quantitative occurrence of the *retro*-benzilic rearrangement in the *proto*-photocycloadducts obtained from **1** and methylenecycloalkanes (**2-4**), together with the results obtained from the related derivatives.

The solution of **1** and methylenecyclopentane (**2**), methylenecyclohexane (**3**) or methylenecycloheptane (**4**) in AcOEt was respectively irradiated by means of a 400-W high-pressure Hg-lamp through a Pyrex-glass filter at 15-20 °C. The each product (**5-7**) was directly isolated; neither pyrolytic work-up nor chromatography of the methylated compound was required.

All colorless crystalline products, **5** (mp 100.5-102 °C), **6** (mp 197-200 °C), and **7** (mp 141-141.5 °C), revealed characteristic ¹H NMR features⁴⁾ for the rearrangement products; e.g., the low-field-shifted Ac signals at δ ca. 2.4, 3.5. The ¹³C NMR spectra of these meso compounds, **5** [δ 25.4(2C), 28.2, 38.7(2C), 38.8, 53.4, 128.9, 158.6, 201.4, and 208.1], **6** [δ 22.5 (2C), 25.0, 28.3, 33.4(2C), 34.8, 46.8, 129.0, 158.0, 201.6, and 208.3], and **7** [δ 23.7 (2C), 28.2, 29.0(3C), 36.9(2C), 49.2, 128.3, 157.4, 201.6, and 209.0], were consistent to the structures depicted.

Other than those described above, the methylenecycloalkanes, 1-methyl-2-methylenecyclohexane (**8**) and 4-isopropyl-1-methyl-3-methylenecyclohexane (**9**), the methylenecycloalkenes, 3-methylene-1-cyclopentene (**10**), 3-methylene-1-cyclohexene (**11**), 5-isopropenyl-2-methyl-3-methylene-1-cyclohexene (**12**), and *endo*-3-methylenetricyclo[5.2.1.0^{2,6}]deca-4,8-diene (**13**), exclusively gave the *retro*-benzilic acid rearrangement products (**14a** and **14b**, **15a** and **15b**, **16**, **17**, **18a** and **18b**, and **19**) as shown in Chart 1. From all these semicyclic olefins, the products were formed in quantitative or excellent yields.⁵⁾

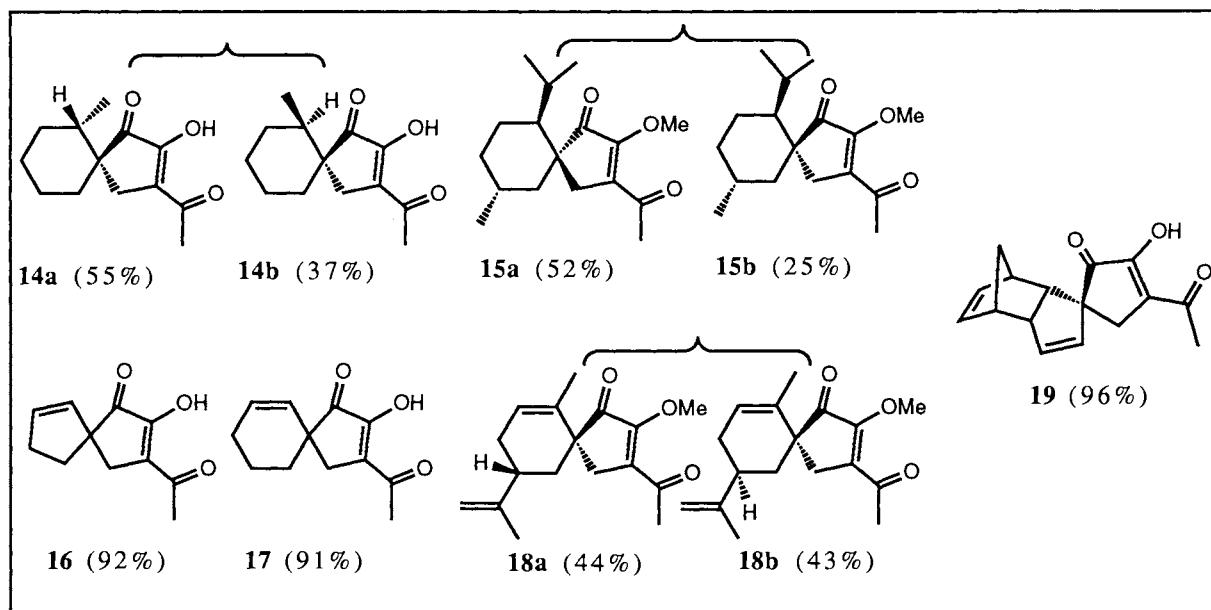


Chart 1. Yields of *retro*-benzilic acid rearrangement products of methylenecycloalkanes and methylenecycloalkenes.

As has been stated, the *proto*-photocycloadducts derived from α,α -disubstituted acyclic olefins such as isoprene and 2-methylpropene caused the rearrangement as only a minor process.²⁾ In addition, camphene, a methylene derivative of bicyclic cage compound, formed a pair of the *retro*-benzilic acid rearrangement products without pyrolytic work-up. However, the yields were still not satisfactory due to the diminished reactivity of

1.3) In this regard, the nearly quantitative formations of **5**, **6**, and **7** from less hindered reactive olefins, **2**, **3**, and **4**, should be of interest from synthetic point of view. The driving force of the rearrangement is a release of the internal strain of the cyclobutanol system.

In conclusion, the methylenecycloalkanes, which have not been examined as reactants for the photocyclo-addition, have been shown to take an entirely different course from the ordinary photoreaction with **1**,⁶⁾ and the reaction of **1** to methylenecycloalkanes and -alkenes thus provides a novel entry to functionalized spiro[4.n]alkenones, which should be suitable precursors for spirocyclic compounds to enhance the utility of enolized β -diketones in organic photochemistry.

References

- 1) It should be mentioned that an intramolecular version of the de Mayo reaction with appropriate substrates results in, via the *retro*-aldol opening of the cyclobutanol ring, the construction of cyclopentane derivatives. Indeed, we have employed this strategy for synthesis of a triquinane, silphinene, from methyl 8-methyl-2,4-dioxo-7-nonenoate. See H. Takeshita, A. Mori, and T. Kubota, *Kyushu Daigaku Seisan Kagaku Kenkyusho Hokoku*, **81**, 1 (1986).
- 2) T. Hatsui, C. Nojima, and H. Takeshita, *Bull. Chem. Soc. Jpn.*, **62**, 2932 (1989); *Kyushu Daigaku Sogo Rikogaku Kenkyuka Hokoku*, **11**, 291 (1989); *Bull. Chem. Soc. Jpn.*, **63**, 1611 (1990).
- 3) T. Hatsui, S. Ikeda, and H. Takeshita, *Chem. Express*, **6**, 845 (1991).
- 4) New compounds revealed following ^1H NMR (270 MHz) spectral data in CDCl_3 :
 - 5**: δ 1.55-2.00(8H, m), 2.39(3H, s), 2.61(2H, s), and 9.87(1H, OH). **6**: δ 1.30-1.86(10H, m), 2.42(3H, s), 2.57(2H, s), and 9.93(1H, OH). **7**: δ 1.45-1.85(12H, m), 2.40(3H, s), 2.57(2H, s), and 9.73(1H, OH).
 - 14a**: δ 0.63(3H, d, $J=7.0$ Hz), 1.30-1.90(9H, m), 2.37(1H, d, $J=16.8$ Hz), 2.45(3H, s), 2.58(1H, d, $J=16.8$ Hz), and 9.72(1H, OH). **14b**: δ 0.79(3H, d, $J=6.6$ Hz), 1.30-1.90(9H, m), 2.38(1H, d, $J=16.8$ Hz), 2.41(3H, s), 2.65(1H, d, $J=16.8$ Hz), and 9.61(1H, OH). **15a**: δ 0.75(3H, d, $J=7.0$ Hz), 0.81(3H, d, $J=7.0$ Hz), 0.86(3H, d, $J=7.0$ Hz), 1.30-1.90(9H, m), 2.17 (1H, d, $J=18.0$ Hz), 2.49(3H, s), 2.56(1H, d, $J=18.0$ Hz), and 4.16(3H, s). **15b**: δ 0.65(3H, d, $J=7.0$ Hz), 0.85(3H, d, $J=7.0$ Hz), 0.89(3H, d, $J=7.0$ Hz), 1.30-1.90(9H, m), 2.36 (1H, d, $J=18.0$ Hz), 2.50(3H, s), 2.62(1H, d, $J=18.0$ Hz), and 4.19(3H, s).
 - 16**: δ 1.30-2.20(4H, m), 2.43(3H, s), 2.44(1H, d, $J=16.0$ Hz), 2.49(1H, d, 16.0 Hz), 5.48(1H, m), 5.63 (1H, m), and 10.05(1H, OH). **17**: δ 1.52-2.20(6H, m), 2.40(3H, s), 2.65(1H, d, $J=16.5$ Hz), 2.67(1H, d, $J=16.5$ Hz), 5.34 (1H, dm, $J=9.9$ Hz), 5.99(1H, dt, $J=9.9, 4.0$ Hz), and 9.80(1H, OH). **18a**: δ 1.44(3H, m), 1.71(3H, br s), 2.33(1H, d, $J=18.0$ Hz), 2.51(3H, s), 2.88(1H, d, $J=18.0$ Hz), 4.19 (3H, s), 4.72(1H, m), and 5.77(1H, m). **18b**: δ 1.49(3H, m), 1.71(3H, br s), 2.51(3H, s), 2.56(1H, d, $J=19.0$ Hz), 2.58 (1H, d, $J=19.0$ Hz), 4.16 (3H, s), 4.72(1H, m), and 5.63(1H, m). **19**: δ 1.42(1H, d, $J=8.1$ Hz), 1.59(1H, d, $J=8.1$ Hz), 2.42(3H, s), 2.45(1H, m), 2.49(1H, d, $J=16.5$ Hz), 2.76(1H, d, $J=16.5$ Hz), 2.87(1H, br s), 2.95(1H, br s), 3.62(1H, m), 5.10(1H, dd, $J=5.5, 1.8$ Hz), 5.68 (1H, dd, $J=5.5, 2.2$ Hz), 5.87(1H, dd, $J=5.8, 3.3$ Hz), 5.99(1H, dd, $J=5.8, 2.9$ Hz), and 9.73(1H, OH).
- 5) The stereostructures of **14a** and **14b** and **15a** and **15b** were assigned by assuming preferred attack of **1** to the cycloaddends from the convex side of the molecules, i.e., the major products, **14a** and **15a**, should have trans relationship between the oxo-carbons of cyclopentenone rings and the alkyl groups. This could not be applied to **18a** and **18b**; however, their stereostructures were distinguished by the chemical shift differences ($\Delta\delta$) between the *gem*-protons on the γ -positions of the α,β -unsaturated keto group. Namely, the $\Delta\delta$ of **16**

and **17**, unsubstituted methylenecycloalkene adducts, are very small, 0.05 and 0.02, which appeared ca. δ 2.5. This was also the case for **18b**, $\Delta\delta$ 0.02, but **18a** showed a large $\Delta\delta$, 0.55, with δ 2.33 and 2.88. Thus, the isopropenyl side chain and the methylene hydrogens of **18a** are suggested to be in the *cis* relationship.

6) It is not surprising that a molecular mechanics calculation (Chem 3D Plus program with the Version 3.0, licensed from Cambridge Science Computing Inc.) carried out with most of these *proto*-cycloadducts revealed almost the same results as obtained from camphene adduct;³⁾ i.e., the π -axis of the ester carbonyl double bond is nearly parallel to the *exo*-C(1)-C(2) bond to be migrated in the cyclobutanol moiety. These results, which strongly support our view, will be reported in a full paper. At the same time, we like to mention that the original, hydrogen-bonded conformation of the *proto*-photocycloadducts is stereoelectronically unfavorable for the *retro*-aldol process.²⁾

(Received June 5, 1992)